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Airframe noise is a growing concern in the vicinity of airports because of population 

growth and gains in engine noise reduction that have rendered the airframe an equal 

contributor during the approach and landing phases of flight for many transport aircraft.  

The leading-edge-slat device of a typical high-lift system for transport aircraft is a prominent 

source of airframe noise.  Two technologies have significant potential for slat noise reduction; 

the slat-cove filler (SCF) and the slat-gap filler (SGF).  Previous work was done on a 2D section 

of a transport-aircraft wing to demonstrate the implementation feasibility of these concepts.  

Benchtop hardware was developed in that work for qualitative parametric study.  The 

benchtop models were mechanized for quantitative measurements of performance.  

Computational models of the mechanized benchtop apparatus for the SCF were developed 

and the performance of the system for five different SCF assemblies is demonstrated. 

Nomenclature 

EA,EM = Austenite/Martensite Young’s modulus 

A,M = Austenite/Martensite Poisson’s ratio 

Ms, Mf
 = critical stress to start/finish the Martensite transformation 

c
Ms

 = critical stress to start/finish the Martensite transformation  

As, Af
 = critical stress to start/finish the Austenite transformation 

CA,CM = Austenite/Martensite Young’s modulus 

H = transformation strain 

To = reference temperature 

SMA = shape memory alloy 

SCF = slat-cove filler 

SGF = slat-gap filler 

AoA = angle of attack 

CL = lift coefficient 

DLE = drooped leading edge 

OML = outer moldline 

I. Introduction 

IRFRAME noise is the component of aircraft noise not attributable to the engines.  Airframe noise is particularly 

important for environmental and community impact in the approach and landing phases of flight because of 

progress in reducing engine noise and the fact that the engines are typically operating at reduced power under those 

flight conditions.  The high-lift system of typical transport aircraft is a major contributor to airframe noise and the 

leading-edge slat is a prominent noise-producing, high-lift device. 
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Many transport-class aircraft incorporate leading-edge-slat and trailing-edge-flap, high-lift devices that are 

separated from the main wing in the high-lift configuration, as indicated by the slat and main wing in Figure 1, because 

this configuration can achieve much greater lift than a contiguous (gapless), high-lift configuration represented by the 

connecting structure (dashed line) shown in Figure 2.  However, the separated slat presents many geometric 

discontinuities to the flow, which is the cause for considerable unsteadiness and noise production in the flow. 

A graphic of the flow characteristics in the vicinity of a deployed, leading-edge slat is shown in Figure 31.  The 

flow splits at the stagnation point on the slat and the flow progressing on the lower surface separates from the slat at 

the cusp and forms a shear layer that reattaches at the top of the slat cove, thereby bounding a vortical recirculation 

region in the cove.  These flow features, and their interaction with the structure, support many unsteady phenomena 

that are sources for radiated acoustic noise1-6.  Significant research effort has been expended in developing concepts 

and approaches for reduction of leading-edge-slat noise without compromising cruise efficiency or the lift and stall 

characteristics at landing. 

II. Slat Noise Reduction Concepts 

Several concepts have been proposed for reducing 

slat noise while maintaining the gap to avoid 

compromise of the aerodynamic performance.  These 

include brushes2, serrated cusps and extended blade 

seals7, and slat-cove fillers (SCFs)8,9.  Brushes result in 

added drag at cruise and the noise benefit is marginal.  

Neither the serrated slat cusp nor the extended blade seal 

resulted in significant noise reduction in a wind tunnel 

test10.  The SCF concept has been shown, both 

experimentally9,10 and computationally11, to 

significantly reduce slat noise. 

A notional SCF of optimal shape to minimize noise 

is shown in Figure 1.  The SCF guides the flow through 

the slat-wing gap such that unsteadiness in the flow is 

reduced.  Previous work was done, based upon the 

optimal SCF profile in Figure 1, to develop a flexible, 

SCF structure that passively and autonomously achieves 

the highly-disparate deployed and retracted 

configurations simply by movement of the slat 

actuator12.  A concept consisting of one or more superelastic shape memory alloy (SMA) components, shape set to the 

deployed configuration, was found to satisfy the application requirements and provide implementation feasibility.  

Further work was done to optimize the superelastic-SMA, SCF design to minimize the actuation authority required to 

stow the structure while satisfying steady-aerodynamic-load and other requirements13,14.  Recent work has studied 

 

Figure 1.  Schematic of a slat device separated from 

the main wing, typical of modern transport aircraft, 

with a notional slat-cove filler. 
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Figure 2.  Notional schematic of a gapless high-lift 

system or a drooped leading edge. 
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Figure 3.  Flow vorticity in the vicinity of a deployed, 

leading-edge-slat device1. 
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means to further reduce actuation requirements15.  Study of the static and dynamic, fluid-structure-interaction (FSI) 

behavior of the highly-flexible SCF structural system has also recently been undertaken16. 

The noise benefit of treatments that maintain the separated (gapped) slat is limited by the fact that the flow between 

the deployed slat and the main wing is maintained, along with some of the noise production mechanisms.  It is 

desirable, from an aeroacoustic noise perspective, to 

eliminate the flow between the slat and main wing to 

minimize the noise production mechanisms and 

maximize the noise benefit.  A class of structural 

concepts of this type, known as drooped leading edge 

(DLE) concepts, are represented by the schematic in 

Figure 2 and have been proposed and studied by various 

research groups specifically to investigate the possibility 

of eliminating the slat-gap flow17-22. 

Typical DLE systems represent a significant weight 

addition because of the extensive added structure and 

accompanying actuation requirements.  More 

importantly, DLE systems cannot achieve the required 

lift and stall performance at high angle of attack (AoA) 

because they negate the advantage of a multielement, 

high-lift system.  This effect is illustrated in the 

representative plot of lift coefficient versus angle of 

attack (AoA) in Figure 4.  Known attempts to overcome 

this deficit, such as via active flow control, have suffered 

from excessive weight, infeasible implementation and/or 

other negative effects. 

Recognition that the lift performance of DLE systems is equivalent to the baseline for all typical angles of attack 

and the deficit only occurs at high angles, corresponding to atypical or emergency conditions, suggests that a gap-on-

demand system is ideal for this application.  The slat-gap-filler (SGF) concept, shown schematically in Figure 5, was 

proposed to achieve a gap-on-demand system.  It was envisioned that the SGF would block the gap flow under all 

normal operating conditions, thereby minimizing noise without aerodynamic compromise, but could be opened in 

atypical/emergency conditions to achieve optimized lift performance at the expense of increased noise at a time when 

noise is not a primary concern. 

Recent experiments demonstrated that closing the 

slat gap practically eliminates the noise from the slat 

component23.  The small structural addition required by 

the SGF concept was seen as simultaneously 

mechanically feasible for implementation, defeatable in 

emergency and with minimal weight addition.  Previous 

work was done to study possible SGF implementation 

approaches including mechanized and deformable 

concepts24.  The approach that best met the design 

requirements and constraints involved utilizing a portion 

of the skin on the leading edge of the main wing as a 

deformable, reconfigurable structure with the potentially 

large deformation enabled by superelastic SMA 

materials.  The SGF could be secured to the main wing 

at one end, actuated by a mechanism at the other and 

could be minimum gauge since it only needs to sustain 

local aerodynamic loads.  Thus, the SGF was envisioned 

to overlay the stressed skin, as shown in Figure 6. 

III. Benchtop Models 

Benchtop models were developed as part of the SCF12 and SGF24 studies to explore practical implementation 

challenges, to quantify actuator authority requirements on a simplified system, and to allow parametric study with 

physical hardware.  The requirement for both concepts to deploy and retract with the slat made it practical and desirable 

 

Figure 4.  Representative plot of lift coefficient 

versus angle of attack. 

 

Figure 5.  Notional simplified gapless, high-lift 

system; the slat-gap filler. 
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for authority from the slat actuator to be used.  A 

schematic of a slat actuator typical of modern transport 

aircraft is shown in Figure 7, where the slat is shown 

actuated by a pinion driving a gear rack integrated with 

the slat track.  The design of the benchtop models was 

based upon the transport-wing geometry shown in Figure 

1 and the actuation system was motivated by that shown 

in Figure 7.  The resulting benchtop models are shown in 

the CAD graphics for the SCF in Figure 8 and for the 

SGF in Figures 9 and 10.  The models represent a thin 

(0.75 inch) spanwise-uniform section from the airfoil in 

Figure 1 to facilitate rapid parametric study and to 

accommodate limitations in the component sizes for 

superelastic SMA components that were available from 

suppliers. 

Hardware common to both the SCF and the SGF 

system included the baseplate, main wing, slat, slat track 

with gear rack, pinion gear and drive assembly.  The 

main wing was fixed to the baseplate.  Two stud bearings 

were mounted on the back side of the slat and inserted 

into slots in the baseplate that enforced movement of the 

slat along a circular arc relative to the main wing.  Ball 

transfers, pressed into the slat, reduced the friction 

between the opposing slat and baseplate surfaces.  The 

slat track was fastened to the slat and mated with the 

pinion in a manner representative of typical flight 

hardware, e.g., Figure 7.  The position of the slat track 

was enforced at the pinion engagement location, thereby 

maintaining gear engagement, by a stud bearing 

protruding from the baseplate and into a slot in the slat 

track.  Note that the slat track did not have to take 

significant bending loads, that would typically be 

accommodated by the roller arrangement in flight 

hardware (Figure 7), because of the slat bearings in the 

benchtop model.  A sleeve bushing and a thrust bearing reduced the friction in the rotation of the pinion.  The pinion 

was driven by an assembly consisting of a stepper motor, gear reducer and a torque transducer, shown on the SGF 

benchtop assembly in Figure 10. 

 

Figure 6.  Schematic of the SGF concept involving a 

deployable-skin overlay on the main wing. 

 

Figure 7.  Graphic of an electromechanically-

actuated, leading-edge slat. 

 

Figure 8.  CAD model for the mechanized SCF benchtop model.  Inset shows close-up of hinge. 
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The slat-cove filler, shown in Figure 8, was attached to the slat near the cusp, or lower trailing edge, by a hinge 

and at the upper trailing edge by a riveted lap joint.  As mentioned in Section II, simplified physical and computational 

models were used for parametric study and optimization of the SCF for this 2D airframe, where optimization entailed 

minimizing the actuator authority required to stow the SCF while satisfying static load and other constraints12-14.  

Multipiece SCF assemblies, consisting of two SMA flexures separated by a stiffer mid-link, were considered in those 

studies because of the possibility for controlling the deformation distribution and, consequently, the stowage timing.  

Although the optimal SCF configuration for this 2D airframe case proved to be a monolithic (one-piece), superelastic 

SMA with the shortest hinge possible, other SCF configurations that satisfied the application requirements were found 

in the course of the parametric study and optimization13,14.  Four of these suboptimal but operable configurations 

(Mono-2 through Multi-3) are shown with the optimal design (Mono-1) in Figure 11, where the reference lines and 

dimensions are consistent with the parametric computational model used for the optimization.  The closest, suboptimal 

design also consisted of a monolithic flexure, but with a longer hinge that reduced the flexible length of the SCF and, 

consequently, the mobility during stowage.  The other three designs were multipiece SCF assemblies with varying 

mid-link length, mid-link position and hinge length that resulted in differing strain-energy distributions and stowage 

timing.  Although it was not advantageous for the present airframe geometry, the presence of the mid-link could be 

advantageous for other airframe geometries.  The five SCF assemblies shown in Figure 11 were selected because they 

span significant ranges of required actuator authority and SCF stowage timing.  All five SCF assemblies were 

 

Figure 9.  CAD model for the mechanized SGF benchtop model; SGF deployed.  Inset shows retracted SGF 

& Geneva assembly without top-main-wing plate, revealing 3-bar mechanism: crank, rod and clevis. 

 

Figure 10.  Top view of the CAD model for the mechanized SGF benchtop model with the drive mechanism. 
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fabricated for testing on the benchtop and modeled in this work to study their relative responses.  It was felt that the 

ranges in response would offer a broad basis for validation of the computational models with experimental 

measurements. 

The SGF benchtop apparatus included additional components, and corresponding complexity, for actuation of the 

SGF, as shown in Figure 9.  The SGF actuation mechanism consisted of a stud bearing on the slat track that engaged 

a Geneva gear as the slat track moved during slat actuation.  Engagement of the Geneva gear rotated a crank shaft that 

drove a connecting rod.  The connecting rod terminated at a clevis that was attached to the moving end of the SGF, 

thereby completing a 3-bar mechanism.  The bearing on the slat track also contacted a locking plate with a tang that 

engaged one of two detents to secure the Geneva gear either in the deployed or retracted position.  The Geneva 

mechanism included an emergency button to simulate mechanized disengagement of the SGF from the slat actuator, 

thereby allowing the slat gap to be opened independent of slat position and movement.  The mechanism was designed 

to reset at the next full slat retraction.  The main wing in the SGF assembly consisted of two plates separated by a gap 

where the crank, connecting rod, and associated connections were housed, as shown in the inset of Figure 9. 

Note that actuation of the slat brings the SCF into/out of contact with the main wing for stowage/deployment so 

that slat actuator authority is used directly to manipulate the SCF in conjunction with the slat.  The SGF actuation 

mechanism was designed to direct actuation authority from the slat actuator to the SGF via the Geneva assembly, 

thereby ganging SGF actuation to the slat in a manner that can be disengaged when required. 

IV. Computational Models 

Simplified computational models were previously developed to analyze the SCF12-16 and SGF24 performance under 

aerodynamic and retract/deploy loads.  The objectives of the present work were to develop finite element (FE) models 

of the mechanized benchtop SCF and SGF apparatus for refined prediction of the structural performance, practical 

estimation of actuator authority requirements, and eventual comparison with experimental results.  Models presented 

in this document will be limited to the SCF cases.  The FE models were developed in Abaqus because of the built-in 

constitutive model for superelastic SMAs and the comprehensive and robust capability for analysis of complex contact 

and large deformation mechanics. 

The representative FE model shown in Figure 12 was built using the CAD geometry in Figure 8.  The model was 

simplified by considering the baseplate, main wing, slat, hinge and bearings to be rigid and only the SCF components 

were deformable.  The size of the FE model was reduced by meshing only essential components.  Consequently, the 

outer mold line (OML) of the main wing and the bounding surfaces of the baseplate slots were the only surfaces 

meshed for those components.  Additional instances of the main wing and baseplate were included as Display Bodies4 

for visualization. 

The rigid components were modeled as shells and assigned rigid-body constraints, each with a Reference Point 

that governed its movement.  The baseplate slots and main-wing OML were constrained to be motionless.  The pinion 

was assigned an enforced rotation of 13.36 radians (2.126 revolutions) about the z-axis so as to drive the entire system 

from the fully-deployed to the fully-retracted configuration.  The slat track was assigned z-symmetry 

                                                           
4 Italicized text designates modeling features or key words in Abaqus. 

 

Figure 11.  Schematic of optimal (Mono-1) SCF assembly with four suboptimal assemblies including 

essential component and dimension information for each. 
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(U3=UR1=UR2=0) constraints to force the slat track to 

move in a plane parallel to the main wing and baseplate.  

The slat-track imposed similar constraints on the slat and 

SCF component(s) implicitly due to a Tie Constraint 

between the slat track and the slat and the following 

additional constraints.  The hinge mount was removed 

from the model and replaced by an idealized analog 

consisting of a Beam Connector to bind the hinge axis to 

the slat motion and a Hinge Connector to allow the rigid-

body-hinge component to rotate about its axis.  The SCF 

was assigned Tie Constraints to the hinge and to the cove 

surface of the slat near the trailing edge.  The slat-track 

bearing was affixed appropriately to the main wing 

component, but allowed to rotate about the z-axis.  The 

Reference Points for the slat bearings were assigned Tie 

Constraints to the bottom surface of the slat.  This 

constraint prevented them from simulating rolling 

contact, but the Interaction Properties with the baseplate 

slots were adjusted to account for that, as described 

subsequently. 

Contact Pairs were established between the pinion 

and gear rack, the slat track and its slot bearing, the slat 

bearings and the baseplate slots, the SCF and the slat 

cove and the SCF and the main-wing OML.  In each 

case, the normal behavior was modeled by a Linear, Pressure-Overclosure constraint.  The tangential behavior of the 

gear engagement and the rolling contact of the bearing in the slat-track slot was modeled by a Penalty Friction 

formulation with an Isotropic friction coefficient of 5%.  The tangential behavior of the slat-bearings in the baseplate 

slots was modeled as frictionless because the rolling behavior of the bearings was suppressed by the Tie Constraint to 

the slat.  The Contact Interaction of the SCF with the slat cove and main wing was also modeled as frictionless because 

of the Teflon treatment to those surfaces on the benchtop model and anticipated, similar treatment for flight hardware. 

The rigid components were modeled with S4R and S3 elements with spatial resolution dictated by geometric 

representation and contact considerations.  The spatial resolution on the slat cove and main-wing-OML surfaces was 

0.2 inches in the chordwise direction to assure reasonable accuracy in contact simulation with the curved surfaces.  

The spatial resolution on the bounding surfaces of the baseplate slots and the slot in the slat track was also 0.2 inches 

for Contact Interaction with the rigid-body bearings.  All of the aforementioned rigid components needed only a single 

element in the spanwise direction because of the spanwise-

uniform geometry. The spatial resolution on the hinge and bearing 

components was nominally 0.04 inches, which was driven by the 

dimensions of the components.  Similarly, the spatial resolution 

on the gear rack and pinion were nominally 0.04 inches near the 

contact surfaces of the teeth, to accurately represent the geometry 

and contact mechanics, while it was coarser elsewhere. 

The flexures were modeled with S4R shell elements and 

assigned superelastic SMA material properties through the User 

Material constitutive model built-in to Abaqus, which is an 

implementation of the model developed by Auricchio and 

coauthors25,26.  Material properties required to quantify the 

constitutive model for the NiTi material used in the benchtop 

apparatus were acquired in previous, related work and are shown 

in Table 113,14.  The flexure mesh provided a spatial resolution of 

0.125 inches in the chordwise direction, which was conservative 

but enabled options for higher-fidelity modeling, e.g., 

incorporating fasteners, for the joints between the SCF and the 

hinge and/or slat cove at the trailing edge.  A single element 

dimension in the spanwise direction was found to be adequate for 

the flexures and this approach was combined with z-symmetry 

 

Figure 12.  FEM of the SCF benchtop apparatus 

with the TE2Hinge SCF installed. 

Table 1. Material properties for analysis of the 

superelastic SMA via the built-in model in 

Abaqus, based upon the Auricchio model25,26.  

Values were determined in previous work13,14. 

Property Value

EA 7086 ksi

EM 5798 ksi

A,M 0.33

r 6.03e-4 lbf·s
2
/in

4


Ms

,c
Ms

68.3 ksi


Mf

74.6 ksi


As

28.5 ksi


Af

24.0 ksi

C
A
,C

M
805.6 psi/°F

H 4.45%

To 75 °F  



 

American Institute of Aeronautics and Astronautics 
 

 

8 

boundary conditions on both spanwise edges of the SCF flexure.  The flexure spatial resolution also was determined 

to be compatible with that of the main-wing-OML and slat-cove for contact simulation.  When relevant to the analysis, 

the mid-link was modeled as an elastic solid with C3D8R elements and material properties (E=30 Msi, =0.26 and 

r=7.4e-4 lbf·s2/in4) corresponding to the stainless steel used for these components in the physical models.  Note that 

stainless steel would not typically be used in a flight application, but it was convenient for the benchtop hardware. 

Analysis of each SCF assembly on the benchtop apparatus was conducted with a Dynamic, Implicit Step with a 

step time of 10 seconds and an imposed pinion rotational displacement of 13.36 radians.  This time period was 

considered to be at the faster end of an acceptable range for slat articulation on a typical transport aircraft.  The Quasi-

Static Application type was selected to stabilize the system during dynamic, e.g., snap-through, events that may occur 

during SCF stowage and avoid potentially excessive computational expense involved in attempting to resolve such 

highly-dynamic behavior. 

V. Results 

The input torque at the pinion, 

corresponding to the z-axis reaction 

moment at the pinion reference point, 

required to drive the apparatus from 

the fully-deployed configuration to 

the fully-retracted configuration is 

shown in Figure 13 for each of the 

SCF assemblies.  Ignoring the 

spurious spikes in the data, it can be 

seen that the Mono-1 assembly 

requires the lowest peak input torque.  

The Mono-2 assembly requires 

slightly more torque in the early 

contact with the main wing, at around 

3 seconds in the analysis, and 

requires significantly more torque 

just prior to the SCF snapping into 

the slat cove at about 8.1 seconds.  It 

can also be seen that the Multi-1 and 

Multi-2 multipiece SCF assemblies 

snap into the slat cove earlier in the 

retraction sequence, at about 5.4 and 

6.1 seconds, respectively, than the 

monolithic designs.  This difference 

in timing is due to contact between 

the stiff mid-link and the main wing 

forcing the lower part of the SCF into the cove more quickly.  Consequently, the Multi-1 and Multi-2 assemblies 

require a similar or lower integrated torque, but the peak torque requirement is almost double that of the monolithic 

designs.  The short and forward-placed mid-link in the Multi-3 SCF assembly does not result in earlier stowage and, 

thus, the assembly requires the highest peak torque as well as the highest integrated torque. 

The spikes in input torque that appear late in the stowage sequence of each assembly are associated with inertial 

effects during a dynamic event when the SCF snaps into the slat cove.  This effect can be seen in the representative 

plot of internal and kinetic energy in the Mono-1 assembly shown in Figure 14.  A drop in internal energy in the 

system, indicative of stress/strain relaxation in the deformable component (the SMA flexure), occurs simultaneously 

with a brief spike in kinetic energy.  The magnitude of the kinetic energy spike is not quantitatively correct due to the 

Quasi-Static Application type of the analysis stabilizing the solution artificially and leaving the calculation of such 

events unresolved computationally. 

VI. Conclusions 

Airframe noise has become a significant problem for the future of transport aircraft operations because of the 

increasing populations in the vicinity of airports and because progress in engine noise reduction has rendered airframe 

 

Figure 13.  Input torque at the pinion versus time for the five SCF 

assemblies. 
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noise an equal contributor during the 

approach and landing phases of flight for 

many aircraft.  The noise problem 

associated with the leading-edge-slat, 

high-lift device was described and the 

technologies proposed for reducing the 

slat noise were reviewed.  The promise of 

two slat-noise treatments, the slat-cove 

filler (SCF) and slat-gap filler (SGF), was 

substantiated.  The SCF fills the slat cove 

with a flexible, reconfigurable structure 

that guides the flow in a manner that 

reduces the unsteadiness and the radiated 

noise while remaining flexible enough to 

reconfigure and stow between the slat 

and main wing for cruise.  The SGF 

blocks the gap flow via a reconfigurable 

overleaf of skin structure on the leading 

edge of the main wing.  The resulting 

configuration achieves lift characteristics 

at angles of attack suitable for landing, 

but can be disengaged from the slat 

movement, to open the gap, at anomalous 

angles to regain the baseline lift and stall 

characteristics.  The SGF promises 

greater noise reduction at the expense of greater mechanical complexity.  Superelastic shape memory alloys (SMAs) 

were proposed to enable the large deformation required for both concepts. 

Previous studies demonstrated the feasibility of the SCF and SGF concepts on a thin spanwise-uniform slice of a 

transport-class airframe, and described optimal SCF and SGF designs for the 2D airframe studied.  Benchtop models 

for the SCF and SGF concepts were developed as part of those studies and recent activity has been aimed at 

mechanizing these benchtop models to quantify the performance of the prototypes.  The objective of the present work 

was to develop computational models of the benchtop hardware for comparison with experimental measurements of 

the actuator requirements and enable extension of the prototype designs to 3D configurations. 

The benchtop model designs for the SCF and SGF systems were discussed in detail.  They include representation 

of the forward 10% of the main wing, the slat, the slat track, the drive mechanism, the SCF and SGF structures and 

an auxiliary mechanism for SGF articulation with the slat.  Computational models of the benchtop hardware were 

developed in Abaqus to predict the system performance.  The modeling approach included simplifications of rigid-

body constraints for the main wing, slat and slat actuation system, but high-fidelity representations of the SCF 

assembly.  The Abaqus-native model for superelastic SMA materials was employed.  Simulations results were limited 

to the SCF apparatus and included the performance for five different SCF assemblies.  The five assemblies were 

identified in previous work using simplified computational models for parametric study and optimization and included 

the optimal design and four suboptimal designs that met the application requirements and constraints.  Implicit 

dynamic simulations were conducted with the Quasi-Static application in Abaqus to stabilize the solution to dynamic 

phenomena such as snap-through of the superelastic component. 

The simulation indicated that the optimal design of a monolithic SMA SCF required a peak torque of 

approximately eight in-lbf from the drive motor for the slat actuator.  Two of the multipiece SCF assemblies required 

less integrated torque relative to the optimal design, although the peak torque requirement was approximately double.  

This behavior was due to the stiff mid-link forcing the forward part of the SCF to retract early.  All of the SCF 

assemblies exhibited a snapping behavior at the completion of SCF stowage.  This behavior was manifested as a 

spurious spike in drive torque because the Quasi-Static application in the simulation stabilized the solution without 

resolving the dynamic behavior.  The presence of the dynamic behavior was confirmed by examination of the internal 

and kinetic energies during the simulations. 

Improvements in model fidelity will likely be required for successful correlation with experimental measurements.  

Improvements could include modeling the inertial effects of the slat, slat track, hinge and pinion.  Refinements to the 

contact interactions could include friction coefficients determined by experiment.  Elasticity of the slat may also be a 

factor.  Simulations of the SGF apparatus will be completed using a modeling approach similar to that described here.  

 

Figure 14.  Internal and kinetic energy in the finite element model 

of the benchtop apparatus with the Mono-1 SCF assembly. 
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These computational models will be correlated with experimental measurements from the benchtop apparatus.  The 

resulting validated computational models will then be used to predict the actuator authority requirements for practical 

3D wing structures and commensurate SCF and SGF treatments. 
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